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ABSTRACT

This paper deals with systems of singularly perturbed ordinary
differential equations posed as boundary value problems on an infinite
interval. The system is assumed to consist of singularly perturbed
(fast) components and unperturbed (slow) components and to have a
singularity of the second kind at -. Under the assumption that there
is no turning point we derive uniform asymptotic expansions (as the
perturbation parameter tends to zero) for the fast and slow components
uniformly on the whole infinite line. The second goal of the paper is
to derive convergence estimates for the solutions of 'finite' singular
perturbation problems obtained by cutting the infinite interval at a
finite (far out) point and by substituting appropriate additional
boundary conditions at the far end. Using a suitabl- choice for these
boundary conditions the order of convergence is shown to depend only on
the decay property of the infinite solution. 4 ,
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SINGULAR PERTURBATION PROBLEMS
WITH A SINGULARITY OF THE SECOND KIND

PETER A. MARKOWICHt AND CH. A. RINGHOFER

1 INTRODUCTION

In this paper we deal with the singular perturbation problem

Sh tc AcesSion Foeye - tah(y,z,t,c)
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where 0 < C << 1; y,h are n-vectors z,g are m-vectors, y is called fast

component and z is called slow component. F(r) is a k x (n+m) matrix,

(n)St Ru where k < n+m holds if the matrix

has at least one eigenvalue with positive real part. For a > b the system

11), e1.2) has a singularity of the second kind oft t F
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For this we use techniques already developed for 'finite' singular

perturbation problems as for example matched asymptotic expansions (see

O'Malley (1978), (1979), Ringhofer (1980), (1981)) and the theory of singular

boundary value problems (see de Hoog and Weiss (1980a,b), Markowich

(1980a,b,c) and Lentini and Keller (1980)).

We show that the solutions y,z of (1.11, (1.2), (1.3), (1.4) fulfill

(1.9) z(tE) = ;(t) + O(C), t e 1,M

(1.10) y(t,C) = 0(. ) + y(t) + Oe), t e 11,-I

where y,z are solutions of (1.1), (1.2), (1.3) with C - 0 (reduced

problem) fulfilling appropriate boundary conditions. Here U(T) decays

exponentially to zero as T +as (boundary layer term) and z,y decay to a

finite limit z,,y. as t + Fulfilling

(1.11) 0 = h(y!,z.,,0)

(1.12) 0 fg(y= ,Z.,,0).

This result generalizes the results by O'Malley (1979) and Ringhofer (1980),

(1981) obtained for finite interval singular perturbation problems.

Singularly perturbed initial value problems on the infinite line have

been investigated by Hoppensteadt (1966) by imposing severe stability

assumption on the reduced problem.

The second goal is to study approximating 'finite' singular perturbation

problems, wivich are set up by cutting the infinite interval [1,"] at a

finite point T >> I and by substituting (for the continuity condition (1.31

at t = ) additional, so called asymptotic boundary conditions obtaining a

'finite' singular perturbation problem

(1.13) Cy' t 9h(y 12 t#C)
T~4

t TT

(1.14) Z, t tg(YTz~tIC)
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cYT(1,0
(1.15) F(C)(T ) - B(c)

.T(,)

(1.16) S(TeICzT(TC) Y(TC)

nm-k
where S(T,C) is an (n+m-k) x (n+m) matrix, Y(T,C) e R + -  The condition

(1.16) shall reflect the asymptotic behaviour of the 'infinite' solution

(y,z) as t + m

'Finite' approximating two point boundary value problems (for unperturbed

infinite problems) have been studied extensively by de Hoog and Weiss (1980a),

Markowich (1980b) and Lentini and Keller (1980).

We show that under rather mild assumptions on the 'infinite' problem (a

certain 'wellposedness' is required) there is a choice of S(T,C) E S and

Y(T,C) 2 Y only depending on the reduced (C = 0) infinite problem such

that the 'finite' (perturbed) problem has a unique solution yTIzT for T

sufficiently large and e sufficiently small (but T and C independent)

which fulfills the convergence estimate

(1.17) (-TI[T] const(exp(- . T ) + c> 0Z-T 11T1+

(I.I denotes the sup-norm on [a,b]) where the constants are independent, [a,b]

of T and C.

The 'finite' singular perturbation problem (1.13), (1.14), (1.15), (1.16)

can then be solved by polynomial collocation methods (see Kreiss and Nichols

(1975), Ringhofer (1981), Ascher and Weiss (1981)). An exponential mesh size

strategy for 'long interval' problems has been developed for the Box-scheme by

Markowich and Ringhofer (1981). This can be used on jW,T], ) > I while

within the boundary layer (on [1,1+O(CIinej)j) a very fine grid (see Ascher. and

-4-



Weiss 1981)) has to be used. Since the solution of (1.13), (1.14), (1.15),

(1.16) is smooth (has uniformly (in C) bounded derivatives) on [1+O(iLjnEI),wJ

standard techniques can be used there.

The paper is organized as follows. In chapter two linear constant

coefficient problems are treated, in chapter three variable coefficients are

admitted and chapter four is concerned with nonlinear problems.

tL *



2. Constant-Coefficient Problems.

At first we study the problem

(2.1) '= t A(e)y + t'B(e)z + tf(t,)

1 (c t <

(2.2) z- t'C(E)y + t'D(E)z + t I(t,e)
(2.3) P(£ )(Y( i ) = B(E)

(2.4) (Y) [

Here y,f are n-vectors, z and g are m-vectors, A(r) is an nxn-

matrix, B(C) an nWm-matrix, C(E) an mxn-matrix and D(C) is an mxm-

matrix. The dimension of the matrix F(s) and the vector O(E) will be

discussed in the sequel (obviously F(s) has n+m columns). We assume that

(2..5) f,g G C([1,-I x [,E 0 J), £0 > 0

(2.6) A,B,CD,F,8 Q C([O,s 0 1).

and that A,B,C,D,f,q,F,$ are (uniformly) Lipschitz continuous at e = 0.

It is convenient to decouple the system (2.1), (2.2) by a linear trans-

formation such that the unperturbed equation of the transformed system does

not contain the fast component. We use the transformation given by Ascher and

Weiss (1981):

(2.7) ))  I ](u).

Assuming that A- 1 () exists for C G [0,0]1 and that 1A - I ()I 4 const.

for £C Q O,s 0 ] we determine L(W) from the equation

(2.8) L(C) = C(C)A- - (D()L()A-(e) + L(s)B(C)L(C)A-(e)).

-6-

- - - . A _



A simple contraction argument assures the unique solvability of (2.8) such

that

(2.9) L(C) = C(E)A 1 E) + 0()

holds. The new system (with u,v as dependent variables) has the form

(2.10) Cu' = t A(C)u + t (E)v + t f(te)

(2.11) v' = t D(e)v + t g(t,Cj

(2.12)(ue im
where A + CBL, D - LB, g - g - Lf holds.

Now we make assumptions on the eigenvalues of A(0), D(0) = D(O) -

-C(0)A - (0)B(0):

A(0) has r+ eigenvalues with positive real part and r_

(2.13) eigenvalues with negative real part (counting algebraic

multiplicities) and r+ + r_ = n.

(2.14) D(0) has r+ eigenvalues with positive real part and

r_ eigenvalues with negative real part and r+ + r_ = m.

We investigate the perturbed problem

(2.15) eu' = t'AlOlU, + t'B(Clv, + OflltC)
1 = tD(0Lv 1 = ttL)

(2.16) v 1  9 t (tC)

(2.17) (u) e c([1,m ).
v1

The assumptions (2.13), (2.14) guarantee that there are transformation

matrices E1, E2 such that the matrices J,, J2  defined by

-1I-
(2.18) (a) A(M) = EIJE 1  (b) D(0) E JE 1

1 2 2 2

are in block diagonal form:

-7-



r 1 12 2
(2.19) (a) J1 JI L (b) J_2 = _0 ;0 J21

where JiJ2 (JiJ2) only have eigenvalues with positive (negative) real

parts. We substitute

(2.20) [0 M0
u1 2 

and get

(2.21) Cw - tjIw + t B()x + t71(t, )

(2.22) x' M t J 2x + t g1 (t,C)

(2.23) (V) e c1l,-fl
x

where B(C) - E 1 B(C)E 2 , fI = E1 I fi gt = E2 gl holds. We solve (2.22),

(2.23) defining

(2.24) *(t, 6) = ep( t -+" )

such that for the slow component

(2.25) x(t,C) *(t,1) I + ( 9 ( t )

r

holds where e c - and the solution operator H6  for 6 ) 1 is defined by

(H6gl-,C))t) - ft#(t,68)9f-*(s,6)s9g(s,C)ds +

(2.26)

+ ft*lt,6)D_,'(s,6)sgls,Clds.
6



Here D D are diagonal projections

+I

(2.27) (a) ;- 1 + (b) D=1+ L 
- L ',

HS was used by de Hoog and Weiss (1980a,b) and they showed

(2.28)(a) HS C(16 ,in]J + C([6 ,-]), 6 > J

(2.28)(b) 1H I 1 6 ( const. independently of 6

(2.28)(c) (H f(*,C))(00) - J= (,)

Estimates of the asymptotic behaviour of (H 6f)(t) as t + *0 are given in

Markowich (1980a).

Inserting (2.25) into (2.21) we can regard h(t,C) - B(C)X(t,E) +

+ f 1(t,e) as inhomogenity and are left with solving for the fast component:

(2.29) ew' t J Iw + t h(t,E), w e CU1I,-]).

We define

(2.30) e(t6,L = t - a J
exL (a+1)I

(GL C 6h(,C))(t) J4It(t,OL)D 4'(S,d,E)s ah(s,c)ds +

(2.31)

+ ft *(t,6,)D l (s,8,L)s ah(s,C)ds
6

where

F'r 1 0o

holds. Then the solution of (2.29) is

(2.33) w(t,C) * (t,l,C)rl]r + G h(,flt

r
for ~ec

-9-



It is easy to show that G ,6 has the following properties:

(2.34)(a) Ge, 6 : C( +6 ,1, ] C(6,fl, 6 )

(2.34)(b) IGC ( const, independently of 8,C(G,6h ( ,f )
6

}1  jlhm }
(2.34)(c) (G h(ec))(W) - -J-1 h(,C).

If h(*,E), h'(tc} e c(1,-]) for all C sufficiently small thena
t

(2.34)(d) (Ge 6h(-,E))(t) . -j-Ih(t,C) + *(t,8,C)D_j h(8,C)

+ £(AC,6 h(o,c)l(t)

where
(2.35) 1A h1",C1 [ (constlh('£,)l, + max hlsC)l)

Z' [6(] [am ose[6,m sa

holds. In the sequel we use the space

(2.36) C [6,]) - C([1,-]) n C ([6,0)) n {fi max ( in).ase[6,-] a

ae a

and as norm we take If0[ 6 ,h] :- IfI[6 ,1 + max If'(s)/s a.

We rewrite (2.11) obtaining

(2.37) v = t D(0v + ta(6() D(0 )v + t -(t,£), t > 1

and get by integration (using (2.20), (2.25))

V(t,E) -E N* l + E2 (H E- (5(c) - (0))v(-,Cfl(t) +

(2.38)

+ E2(H1EI2 g(",C))(t).

where H :C(l,']) + C ([l,]) is bounded.

-10



We conclude from (2.28)(b) that (I - E HIE;((E) -1(0)) -  I + 0(E) as an2a 1an

operator on C(fl,]) such that F

v(t,C) - E(t +) O+(E)& + E (H1E lq(*,E t) +

(2.39)

+ (g(e)I i,1 )

holds uniformly on (I,). (The asymptotics for vl(t,E)/t follow

immediately). Rewriting (2.10) gives

(2.40) Eu1 = tA(0)u + t(A(E) - A(0))u + taB(C)v + taf(t,C), t > I

and we obtain (using (2.20), (2.33))

u(t,E) = El'(t,1,E)[iO] + E(GCI E - 1 (A(E) - A(0))u(-,)(t) +

(2.41)

+ E (G ,E (B(l)v(-,E) + f(.,C)l(t).

From (2.34)(b) we conclude that (I - E GC,IE; (A(E) - A(0))) -  = I + 0(E) as1aI

operator on C(f1,p]) such that

(2.42) u(t,E) - E 1f(t, 11 E)[IT] C + 0(E)X +

+ E1 (G€ 1
1 (B(E)v(.,e) + f(,)))(t) +

+ OlC (Iv(* If. )I [I,-) + If( ,E )l [1 )

Resubstitution in (2.7) gives y,z. Since y,z depend on r + r

parameters (C and E) we assume that the matrix F(C) as in (2.3) has

r + r rows. By collecting the terms of y,z which depend on &,C we get

C1Theorem 2.1. Let fq G C1([Iin) uniformly for small ) 0 an assume

that the Cr + r ) x (r + r )-matrix

-11 -
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E D E1 A M

(2.43) F(O)

0 E l1

is nonsingular. Then, under the given assumption on A, B, C, D, F,O the

boundary value problem (2.1), (2.2), (2.3), (2.4) has for all C sufficiently

r +r

small and for all O(E) e R a unique solution (y which depends

uniformly continuous (in C) on O(E) and on f,g e C([I,m1) when regarded

11as dwelling in C([1,00). Moreover ey C'~([8,-]) for 8 > 1 dependa,

uniformly continuous on f,g e C ((1,1]) and

z(t,C} E E2 (t,1) I + E 2 (H1 E2 (g(',0)

(2.44)

- C(O)A (o)f(*e0)))(t) + 0(C)

(2.45) y(t,C)" E I(tI'C)[IO] C + DJ-1
(E

1 B(C)z(1,C) +

+ filC))) - A-l(0)(B(O)z(t,O) + f(t,O)) + O(C)

holds uniformly on [1,].

From (2.28)(c), (2.34)(c) we derive

(2.46) z(',C) - -(D(0) - C(0)A- I(0)(0))-I(g(",0) - C(0)A 1(0)f( ,0)) + 0(C)

-1
(2.47) y(I,E) - -A (0)(B(0)z(4,0) + f(",0j) + 0(C).

-12-



The first term in (2.45) is the exponentially decreasing boundary layer

contribution (the thickness of the boundary layer is a(ClIneI) and the second

term is the solution of the reduced problem (2.1) (with C = 0).

If we drop the restriction that D(0) = D(0) - C(0)A-1 (0)B(O) has no

eigenvalue on the imaginary axis (see (2.14)) we have to assume that

f(t,c),g(t,C) converge to zero algebraically as t + ". A sufficient order

of decay is t , where r is the dimension of the largest Jordan

block of D(0) which has an eigenvalue on the imaginary axis and y > 0 (see

Markowich (1980a)). For the contraction arguments algebraically weighted

C(11,0]) resp. C ( W,"]) spaces have to be used.
a

For the numerical solution of (2.1), (2.2), (2.3), (2.4) we cut the

infinite interval at a finite point T >> 1 and replace the continuity

requirement (2.4) by r+ + r+ boundary condition at t = T. These boundary

conditions shall reflect the asymptotic behaviour of y,z as t + 0. So we

get the 'finite' singular perturbation problem

(2.48) £y = t A(E)y T + t B()z T + t f(t,e)

1 t T

(2.49) Z; t'C(CYT + t D(C)z T + t g(tC)

(2*50} F(C) ( eC)) = O(E)

y (T C)(2.51) S(Te )[Z(T,£) ) = Y(TC).

r+ +

Here S(T,C) is an (r + r +) x (n+m)-matrix and y(Te) e R

-13-



A possible choice is

[IFO]E1!; [i ,O]E 1
1A- (O)B(0)

r+ Ir+

(2.52) S -ES(T,C) 0D]

(2.53) Y(T) Y(T,C) 2
E 2 Z001 J

This ':asymptotic I boundary condition has been used by de Hoog and Weiss

(1980a), rMarkowich (1980b) and Lentini and Keller (1980) for unperturbed

problems on infinite intervals. Let .A~t,C) denote the fundamental matrix of

(2.1), (2.2) (.A(1,C)- 1). Then by proceeding as de Hoog and Weiss(1980a) did

ye can easily show that sIN(T,C) does not contain exponentially decreasing

terms. Therefore the countary condition S ((T C) ) - 0 sets the expo-
z(TC)

nentially increasing solution components of the homogenous problem (2.1),

(2.2) to zero. Y(T as in (2.53) is the necessary (boundary) correction term

for the inhomogenous problem.

By proceeding as in de Hoog and Weiss (1980a) we find the stability

estimate for the solution of (2.48), (2.49), (2.50), (2.51) when using S as

in (2.52) and assuming that the matrix (2.43) is nonsingular

I( ZT)I [1,T] const(I8(C) + *T(T,EII + *f(-,C)I [iT] +

+ I g( ,C ) I [1 ,T ]

-14-



r+r r+r

for all 8 Q 0 - , Y Q R +  , f,g G C([I,T]) where the constant is

independent of T and e. By subtracting (2.48), (2.49), (2.50), (2.51)

from (2.1), (2.2), (2.3) we get the error estimate

(2.55) I( Y-YT) cons tIS( ''') y(T I).L ~Z-Zn [1,T) Z~st(Y (T,e
T ((T))

Inserting (2.44), (2.45) into the right hand side of (2.55) (when using

(2.52), (2.53)) gives the uniform estimate

1(Z-z ) 4 const(IE (HE-I (q(*,0) - C(0)A I(0)f('0))(t)

(2.56 (1T 2 1 2(2,56)

- z(Q,0)1 + O()).

Convergence follows because (2.28)(c).

Since the solutions of the reduced problem (c = 0) (2.48), (2.49) do

not generally fulfill (2.51) one has to expect a boundary layer at t - T

whose height can be estimated by the right hand side of (2.56).

Estimates of the order of convergence of the first term of the right hand

side of (2.56) depending on the decay of f,g as t + a are given in

Markowich (1980a), (1980b).

Therefore under the qiven assumptions the asymptotic boundary condition

(2.51) can he consructed with respect to the reduced (c = 0) infinite

problem.

-15-
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3. Variable Coefficient Problems.

We consider the problem

(3.1) Cy' tOA(t,C)y + t aB(t,5)z + t f(t, )

1Ct <
a> -1

(3.2) z' = taC(t,e)y + t*D(t,c)z + tag(t,c)

(3.3) F(E) (Y(1e) = (E)
z(1,)

(3.() e c, )

where the dimensions are as in Chapter 1 and assume that

(3.5) A,B,C,D,f,g e c([,-]i x (o,e 0o1; F,o e c([o,tcol)

holds for some CO > 0 and that F,O,A,B,C,D,fg are uniformly Lipschitz

continuous at c = 0.

Moreover we assume that the eigenvalues A(t) of A(t,O) split up into

two groups such that

(3.6) Re 1 (t) > c+.,.,Re A r(t) > c+, c+ > 0, t ) 1

(3.7) Re A r+1(t) I -c ,***,ReA n(t) C -c_, c_ > 0, t 1 (n - r+ = r-)

holds (eigenvalues are counted accoring to algebraic mltiplicities) and that

there is a transformation to block form

-1 rJ+ (t) 0 Jr

A~,O -E(t)J(t)g (t), J(t) -L~ --- Irsuch that the eigenvalues of J+(t) (J_(t) are r (t),*,A It)
+

( (+ltl""'n(t)) and

(3.9) IEI + IE-1 , const.

-16-



Under the assumptions (3.6), (3.7) and additional smoothness assumption on

A this transformation matrix E exists at least locally (everywhere in

Sm] |, but the assumption of the global existence is much more restrictive

(see O'Malley (1979)). At first we investigate

(3.10) Ly' - t*A(t,L)y + th(t,S), y e C(1,))

and substitute

(3.11) y - E(t)x

obtaining

a at -
(3.12) ex' - t J(t)x + t (I (t)(A(t,L) - A(t,O))E(t) -

-Ct- R (t)E'(t))x + tog- (tjh(t,Cl

(3.13) x e c([1,-i]).

Using a perturbation approach we first solve
a a

(3.14) Cu' = t J(t)u + t d(te), u e C([,o]).

According to (3.8) the system (3.14) splits up into

(3.14)(a) Cu: - tJ+(t)u++ t ad+(t,C), u+ e c(mle)

(3.14)(b) CUP tJ (tju + td (t,e), u e C([1,-]).

At first we analyse (3.14a), which we rewrite as

(3.15)(a) Cu+ t a J+()u + Jo(J +t) J j + a+ d (tL)+ + + tj+(t + -+ t +(t

(3.15)(b) u+ L C( [1,]).

We regard (3.15) as an inhomogeneous constant coefficient problem with the

fundamental matrix
J+(m) 4t~ 6~

(3.16) + (t,6,L) = exp((+1 - +)), 6 1

and with solution operator

(3.17) (G+ d (ee))(t) ft,+(tC,6,L)* (s,dL)sad (s,C)ds, t ) 6.
+ + +

-17-
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The solution of (3.15) is

(3.1R) u+ = G,6 (J+(*) - J+(-))u+ + +"d + )

Since (2.39) holds and J+(t) + J+(-) the operator I - G, 6 (J+() -

is invertible on C([6S,]) for 6 sufficiently larqe. We obtain

(3.19) u +t) = ((I - G 6 J +4) - J+(-))) G(6d+
4.E))(t), t ) 6.

+/

(8 Cd +(",e))(t)

To get a solution on (1,1 we solve the termitW, .:-a problem

(3.20) eu- e (+t)u + td+(t,e), " ' '

(3.21) u(6) = u (6).
++

and set (8 d (-,e))(t) := u (t) for t ( " ?i is an operator on

and since the eigenvalues of J+(t) have strletly positive real part

(3.22) 1e + const

holds and because of (2.34d), (2.35)

(+~ .c)t - + iG+d(.)(t
(ee +(Oe) M MX ( (G a(J +(0) -i - e,6d+(ee t

i=0

(3.23)

--(j (t)) -d (t,c) + O(eld (.,cl
+ + +,,,] )

holds for t • 6. By continuation (3.23) holds for t ) 1 (See Rinqhofer

(1981)).

We rewrite(3.14)(b) analoguously

(3.24)(a) Cu _ = t 4J()u_ + t-(J_
(t )  J())u_ + t d(t,e)

(3.24)(b) u G C((1,])

and define the fundamental matrix

(3.25)te ( )(+l - 6 +)) 6 1

and solution operator

(3.26) (G8 (t0 A W J (t,6,)- (s,8,) d-(s,e)ds, t 6
4 h er2o 6
such that the general solution of (3.24) is

-18-



u =(i - G, 6 (J(-) - J_(-)))- 14(.,E,) +

(3.27)

+ (I - GC,(J() - J(')))-Gd_(.,c)

for Q C - and t ) 6. We call the first term on the right hand side of

(3.27) 4,(t,6,c)[ and the second u (t,E). Obviously

(3.28) r(6,5,c) = 'r ,(-,8,c) = 0, u (6,c) = 0

hold. 4 has a boundary layer at S. The homogenous problem (3.14)(b) has

a fundamental matrix 4_(t,c) such that

(3.29) (a) 4_(1,e) = Ir ' (b) 14 (t,e)l 4 c lxp(-- l) ( 1))

holds for t G (1,61 where c 1 , c 2 > 0 (see Ringhofer (1981) and under more

general assumptions O'Malley (1978)). We set

(3.30) *_(t,C) = i_(t,6,5)4 (8,C), t ) I.

Since ;(8,c), = (6,c) we obtain 4 - 4 and the boundary layer has been

shifted from S to 1. On (1 + 0(ltnE:I),-j the matrix 4_ is smooth.

Another particular solution is

(3.31) Up (t,E) _tCj1sesd(s,r:)ds, t G(1,61.
- -1

-c2  u1

Since I4 (t,)-1 (s,)I ( c 3 exp ( ) s holds on (1,81 we

derive

(3.32) lu (., C constld C., ,61

Setting

(3.33) U (t,5) = (Ord (*,£C))(t) := '_(t,8,e)u (8,C) + u (t,C)
p~p p-- .

we obtain u - u and

(3.34) lei , const

because on [1,81 we use (3.32) and on [8,-I we use estimate (3.33) and

(3.27). As qeneral solution of (3.14)(b) we take

-19-
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(3.35) U (t,C) . _(t,C)K + (a d.(,,F))(t), t

and we find

u_- (t,c) -_(t,sC + J - _(1)d(1,e)) - _(t)d_(te) +

(3.36)

+ O(Cd-( [ 1 , )

uniformly on [1,001.

Setting 8C we write the solution of (3.12), (3.13) as

(3.37) x + 8C(R- I(A(9,) - A(*,0))E - C;)x + 0e- h(',E)

where i(t) - t'E-l (t)E'(t) has been set. (3.5), (3.9) guarantee that

A(t,6) - E-l(t)(A(t,) - A(t,0))E - E(t) + 0 as 6 + 0 uniformly on

11,.. Therefore (I C A(9,C)) exists on c([1,1] and is bounded

uniformly In E such that

x(t,') " (I - 0£( ',e)) 1 L 0]) (t) ¢ +

(3.38)

+ ((I - eOA( ,C)) - E 'hh .' )(t), t ) 1

r
holds for C e C

(3.39) y(t,e) - D(te) i ]P - A(t,)h(tS) + O(CQh(%£) 1a t P 1

holds where [(t,£)[xO is the boundary layer term (at t - 1) fulfilling the

r

estimate (3.291(b) and p e C This is proven by using the series

expansion of (3.38).

Returning to the coupled problem (3.1), (3.2), (3.4) we assume that

(3.401 A,S,C,D,feg S C1([1,001) uniformly in

-20-

4 - - " , '



From (3.39) we get for fixed z e C1 (

y(t,C) "(t,E[ 1 o] P - A'(t,O)(B(t,O)z(t,e) + f(t,O)) +

(3.41)

(1) (2)+ £(L C z)(t) + C(L C f)(t)

where L C 111,], + C(11,]) and IL(I l  4 const, i ) 1,2.

Inserting (3.41) into (3.2) gives

Z, = ta(D(t,O) - C(t,O)A- 1 (t,O)B(t,O))z + tUC(L(3}z)(t) +

(3.42) + ta (L4 f)(t) + I(CM_C)" 0

(41) +l tC P + gt,)l

z e C([1,"]).

(J) cI

Again the operators L C ([I,']) + C([1, ]), j = 3,4 are uniformly (in

C) bounded.

Setting D(t,C) D(t,C) - C(tp)A- I(t,C)B(t,c) and assuming that

(2.14), (2.18b) holds for 5(0,0) we can solve

Q- a- 1
(3.43) z, - t D(t,o)z + t g(t,c), z e %(11,C11

by using the theory developed by de Hoog and Weiss (1980a,b). We obtain for

r
e c

ze-(I-E2 H8 E-1(D(,0) - D(',o))E2) #(*,6)IOt +

(3.44)
H (D(,o) - t(CDO))E2 H - v

2 a 2 2 a 2 g(%C),

where Ha,#(t,S) are defined in (2.26), (2.24) resp. and 6 is sufficiently

large. The right hand side of(3.44) can be continued to [1,6] and we obtain

(3.45) z(t,C) 4 *(t)[] + (rg(eC(t), t • 1

-21-
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where r' C([i,o) C 1([Iw) and Ir[ C const. Applying this to

(3.42) gives . I.

(3.46)
+ (Fg(-,e))(t) + 0 Zr

( ) 1 (31
:C (E1,1]) + C ([1,0]) and irL(] n const. Therefore

(I - rL(3 )1  exist as operators on C ([1,) for £ sufficiently small

z(t,E) - , 0] + (r(g(.,0) - C(.0 )A- 1( )f(0O ))(t, +

(3.47) 
+ 0 FoI + 0(c).

Using the exponential decay of I(tC.)i n h einto f H ti

easy to show that 
r-j

(3.48) irc(.De)Y(.D, fO] [1 O (s).

So we obtain

Theorem 3.1. Let the given assumptions on A,B,C,D,f,g hold and assume that

the (r_ x r.) x (r_ x r )-matrix

7( ~ 1 LrX (I)D+R(l) A B W
r~oo

in nonsingular (F(S) is a (r_ + r ) x (n+m)-matrix). Then the boundary

value problem (3.1), (3.2), (3.3), (3.4) has for sufficiently small S &nd

-22-
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r +r_ - 1
for all 8(E) e R , fg e C C1,11) (uniformly in C) a unique

solution y,z. The continuity statements of Theorem 2.1 hold and

z(t,S) fl (r(g(e,o) - c(*,0)A (0,O~f(0'Ifl(t) +

(3.49)

+ O(E), E e C

(.0)y(tE) .t,e)[I]p - A-
1
(tO)B(tO)z(t,O) + f(t,O)) +

(3.50)
r

+ 0(), Y e c

hold uniformly in [1,0]. y(',E), z(O,E) are as in (2.46), (2.47) when

A(0), B(0), C(0), D(0) are substituted by A(0 ,0), B(0,0), C(c,0), D(0 ,0).

The 'finite' problem is

(3.51) ey;= t Alt,C)Y T + taBltcazT + t flt,C)

1 4 t 4 T
(3.52) z; taC(tE)YT + t (tEcz T + t f(tC)

(3.53) F(C) )yZT(0E -O

1~ ~

T T ,)y

(3.54) S(T,Ey)T(T,:C ) - Y(TE)

where Y(T,E) e R , S(t,C) is a (r ++r) x (n+m)-matrix. We assume that

(2.18)(a) holds for A(0,0). Then by proceeding as de Hoog and Weiss (1980a)

did, we find that we can use (2.52), (2.53) in order to set up the asymptotic

boundary condition (3.54). (We do not have to know E(t) explicitely since

it can be chosen such that E(t) + E as t + 1). The convergence estimate

(2.56) holds if we add O(exp( - P T + )), P 0, which is an estimate

for the order of decay of 0(t), to the right hand side.
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4. Quasiliner Problems.

We investigate

(4.1) CY' =- A(zt)y + tof(zyt,)

a > -
1 ICt <m

(4.2) z' = tq(z,y,t, 1 t

(4.3) F(C )ry ( 1 ,E C) O

z(1,C) (1)

(4.4) G CU1,W])

where A(z,t) is an nxn-matrix, f an n-vector, g an m-vector and we

assume that the Problem (4.1), (4.2) is quasilinear:

(4.5) Ly 0( )

for t G fIin, c G (O,C ] and y,z in compact sets. We get immediately
0

(4.6) f(z,y,t,0) = f(z,O,t,O).

We now assume that F(e) is a k x (n+m)-matrix (k will be specified later)

and
f,q Q C211R +n x (1,m_ x (0,C01) n ([1,ml1

Now we proceed as Rinqhofer (1981) did. We split F(0) into

(4.8) F(0) ( = Fz(0)& + FO G n , S 1 R7
2

and we assume that there is an integer r C n such that+

(4.9) F (O) 1 = F (0)9 + F (0O)C
Y+

where

(4.10) + R +, G R r - n-r1 ;-j 1 . +

and the k x r matrix F (0)(k ) r is assumed) has maximal rank r_
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Therefore, there is a k x k matrix Z such that

ZF (0) V Z =
Y-~ ~ 0 }k-rZ k r

r k

holds where V is nonsingular.

The main assumption is the following. The reduced problem
a

(4.12) Z' = t g(yZ,t,0), 1 4 t < -

(4.13) 0 - A(z,t)y + f(z,0,t,O), 1 4 t <

(4.14) z2z()(Y )( 11] Z20(0)

(4.15) (Y) e c(,-i)

has an isolated solution (see Keller (19751 y =y, z z z and

(4.16) AAz,tl V !t) r_

holds in C. ((z,t)llz-(t)I 4 p, t e [I,']}, p > 0, where the

eigenvalues + (z,t) of A+(z,t) and Xt(z,t) of A_(z,t) fulfill

(4.17) Re X +(z,t) ) C+ > 0 (z,t) e C.

(4.18) Re X.(z,t) -c < 0, (z,t) e C.•

This guarantees that (4.13) can be solved for z locally around z and

(4.19) y - y(z,t) - -A- (;,t)f(z,O,t,0)

holds. We now assume that the matrix

-25-
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(4.20) D = + s(z(-),yV-},-,0) -  (z(-,).

(A"1  is supposed to be smooth) fulfills

- -1 [ + ho:] +
(4.21) JJ=

r + r_

where the eigenvalues of J +(J) have positive (negative) real parts.

Theref2re we assume that Z2F(0) is a matrix r_ x (n+m) matrix,
r_

z B) e R and k = r + r such that (4.12), (4.13), (4.14), (4.15) is
2- -

well posed with respect to the number of 'finite' boundary conditions (see

Markowich (1980a), de Hoog and Weiss (1980a,b)). Obviously z. =

Y - y( ) are solutions of

(4.22) (a) 0 = g(y,z,I,O), (b) 0 = A(z ,0)y + f(z.,O,a,0)

and we assume that z ,y. are isolated and that f(y.,z.,t,O) E 0,

g(y.,z,,t,0) B 0, t I 6 1 holds. Therefore D as in (4.20) can be

calculated a priori at these roots.

Let f(t,c) denote the fundamental matrix of

(4.23) Cv' - tQA(z(t),tv, t(1,e) = I.

We only state the existence result since the proof goes along the lines of the

proof given in Ringhofer (1981) for finite-interval problems using the linear

theory developed in chapters 2,3 of this paper.

Theorem 4.1. Let F(e) e c(fo,e 0]) be a (r_+r x (n+m) matrix. Under the

given assumption the problems (4.1), (4.2), (4.3), (4.4) has a locally unique

solution y,z for C sufficiently small such that

- *(t) - [t0]) + ;(t) + OC

z(t,C) - z(t) + OC)
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r
for some 4 e C holds uniformly in [1,0].

From chapter 3 we conclude that

(I l-c ti+ *,1

,(t,E) 14 const.exp( --T ta+1)), c > 0

holds. t-asymptotics for z~t),(t) can be obtained from lMarkowich (1980a)-

(4.25) z(t) = 2(') + E$(t) I}'+ 0(I.(t)Li;] '2)

r

for t e C where
(4.26) *(t) = eta lt 1)

holds. From (4.19) we get

(4.27) Y(t) -Y(401 + + (z(ci.)E(tJ[].

The approximating 'finite' problems are

(4.28) ey; = t A( zTt)yT +t f(ZTTYTrt,e)

1 t' T

(4.29) Z' = t g(yTZT t)

y( 1,e;)

(4.30) F(EI( 1,c)
z(0,C)

YT(Tr e

(4.31) S(T,}e)(yT(T,E ) Y(TE)
zT(T,E)

r+
where S(T,E) is a (r++r+) x (n+m) matrix and Y(TE) e R • We choose
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+ r

(4.32) S = S(T,C) [,

and

(4.33) Y Y(T,") =

Then we obtain

(4.34) S(y(T,) _y . (t 01,2) + O(C)
z(T, )) -I- = ( (

and by using the linear stability result (2.54) we get by proceeding as

de Hoog and Weiss (1980a) did

(4*35) CT I I y (T C )

I )ZT [1T const * (zT,C)) - yE

for the locally unique solution yT' zT of (4.28), (4.29), (4.30), (4.31)

such that (4.34) constitutes the convergence estimate.

As in the linear case this asymptotic boundary condition only depends on

the reduced 'infinite' problem.
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